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Synopsis 

In previous papers, interpenetrating polymer networks were shown to display a cellular structure. 
The phase domain size of polymer I1 was shown to depend inversely on the crosslink density of 
polymer I. The present paper presents a semiempirical derivation of equations which show quan- 
titatively the dependence of the phase domain size of polymer I1 on the crosslinking density of 
polymer I, and also on the interfacial energy and the overall composition. If polymer I1 is linear, 
the dependence on the molecular weight of polymer I1 is also included. The values of the phase 
domain sizes so estimated are compared with experimental results. While theory and experiment 
yield good agreement, the semiempirical nature of the equations must be borne in mind. 

INTRODUCTION 

Most of the interesting classes of polymer blends,’ graft2 and block3 copoly- 
mers, and interpenetrating polymer networks ( IPN’S)~?~ display some type of 
phase separation. For example, block copolymers that have dispersed spheres, 
cylinders, or alternating lamellar structures are well known, while solution-type 
graft copolymers exhibit a phase-within-a-phase-within-a-phase morphology. 
The cellular structure of sequentially synthesized IPN’s has been well estab- 
lished.6-8 

A typical cellular structure for an SBR/PS IPN is shown in Figure 1. In this 
transmission electron micrograph, the diene-containing phase has been stained 
with osmium tetroxide. 

While each of these polymer/polymer systems exhibit characteristic mor- 
phologies, only in the case of the block copolymers has a serious effort been made 
to understand phase domain size and structure in terms of macromolecular pa- 
rameters.9 The object of this paper is to present a semiempirical approach 
toward correlating the phase domain size of IPN’s and semi-IPN’s of the first 
kind (polymer I crosslinked, polymer I1 linear) with crosslink density, compo- 
sition, and interfacial tension. The resulting equations will be tested, employing 
data published elsewhere.8 

THEORY 

A thermodynamic approach will be used to develop a theory for predicting 
the size of the IPN domains. The derivation is performed for a semi-IPN of the 
first kind but can be extended to the full IPN as a limiting case. 
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Fig. 1. Transmission electron micrograph of a styrene-butadiene rubber/polystyrene (SBRFS) 
interpenetrating polymer network. The SBR portion is stained with osmium tetroxide. Sample 
from series No. 5, with 0.1% Dicup in the SBR. 

In this simplified treatment, IPN morphology is evolved over the following 
hypothetical path, and the free-energy change over this route is developed. 
Initially, in state 1, polymer I and polymer II'are completely separated. At an 
intermediate level, state 2, the polymer I network is uniformly swollen with 
polymer 11, and the two polymers form a regular solution. Finally, in state 3, 
polymer I1 phase separates into spherical domains within the polymer I network, 
with no change in the volume of the system. It is assumed that, on a macroscopic 
scale, phase separation does not alter the state of swelling of the polymer I net- 
work. It is also presumed that thermodynamic equilibrium is achieved in each 
step, which represents a significant approximation in the case of IPN's. 

The free-energy change for polymer I1 domain formation, Gd, is the sum of 
the free-energy changes from states 1 to 2 and from states 2 to 3: 

AGd = AG,z+ AG23 (1) 

The free-energy change from state 1 to state 2 is equal to the sum of the ordinary 
free energy of mixing, AG,, and the elastic free-energy change of the polymer 
I network which is uniformly swollen with polymer 11, AG,l: 

AG12 = AG, + AGel (2) 

The free-energy change from state 2 to state 3 is equal to the sum of the ordinary 
free energy of demixing, AGd,, and the surface free energy for domain formation, 
AG,: 

(3) AG23 = AGdm + AG, 
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Free Energy of Mixing 

The term AG, in eq. (2) is represented by eq. (4), where AH, and AS, are 
the heat and entropy of mixing, respectively, and T is the absolute temperature 
at  which mixing occurs: 

(4) 

The heat of mixing of nonpolar substances can be represented by a Van Laar- 
Hildebrand-Scatchard expressionlo: 

AG, = AH, - TAS, 

= V(61- 62)24142 (5) 
where = volume fraction of polymers 1 and 2, respectively; 61,82 = solubility 
parameters of polymers 1 and 2, respectively; and V = total volume of mix- 
ture. 

Using a lattice model, Floryll has developed an expression for the entropy of 
mixing between a solvent and polymer. Extending this development to the case 
of a mixture of two polymers, the entropy change can be approximated by 

AS, = -k(N1 In $1 + N2 In 42) (6) 

where N1, N2 = number of polymer 1 and 2 molecules, respectively; and 12 = 
Boltzmann's constant. 

The ordinary free energy of mixing can now be expressed by the following 
equation: 

(7) AG, = V(al - 62)2414q + KT(N1 In d1 + N2 In 42) 

Elastic Free-Energy Change 

The elastic free-energy change is primarily an entropy contribution arising 
from the uniform swelling of the polymer I network by polymer 11. This can be 
expressed as 

AG,l = -TAS,i. (8) 

Flory has derived the entropy change for the isotropic swelling of a rubber net- 
work:ll 

AS,l = -(12v1/2)(3a12 - 3 - In a13) (9) 

where v1 = the effective number of polymer chains in network I; and a1 = the ratio 
of perturbed to unperturbed chain dimensions for network I. 

The chain expansion parameter, q, can be expressed as 

a1 = (r/r0)1 (10) 
where ro and r are the root-mean-square (rms) end-to-end distances of the un- 
perturbed and perturbed molecule, respectively, for polymer I. Also, ro is equal 
to" 

ro = KM112 (11) 

where K is a known constant for most polymers and M is the average molecular 
weight of the polymer. Combining eqs. (10) and (11) and substituting into eq. 
(9) with the assumptions that r equals rl, the rms distance between crosslink sites 
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in polymer network I, and M equals Mcl, the number-average molecular weight 
between crosslink sites for the polymer I network, yields 

A S  =-[%I [z- 3r12 3 - l n  ( r l  )3] 
KMci U2 

el 

The elastic free-energy change from state 1 to state 2 is then 

Free Energy of Demixing 

Returning to eq. (3), AGd, is equal to 

AGd, = mdm - TASdrn (14) 
where A&, and ASd, are the heat and entropy of demixing, respectively. The 
heat of demixing can be approximated by a negative heat of mixing which is the 
opposite of eq. (5): 

(15) 
The entropy of demixing is the entropy change between states 2 and 3. A t  state 
2, A S  is equal to eq. (6), or 

AS2  = -k(N1 In $1 + N2 In 42) (16) 
From statistical mechanics, the entropy of a system in a specified state can 

be defined in terms of the number of possible arrangements of the “particles” 
composing the system which are consonant with the state of the system.12 Each 
possible arrangement is called a complexion of the system, and the entropy is 
defined by eq. (17), first developed by Boltzmann, where Q equals the number 
of complexions: 

A S  = k In Q (17) 
In the final state, the two polymers are considered to be completely phase 

separated. Polymer I forms the continuous phase, and polymer I1 forms the 
discontinuous phase. Nd domains of polymer I1 are formed, with a total of N2 
polymer I1 molecules occupying the domains. If a particular polymer I1 molecule 
is able to enter any of the Nd domains during phase separation, the number of 
complexions is 

D = (Nd)N2 (18) 

AH,, = -AHrn = -v(61 - 62)24q$2 

For state 3, A S  can now be expressed as 

AS3 = k In (NdlN2 = kN2 In Nd 

(The entropy of polymer I, a pure phase, may be considered zero.) By sub- 
tracting eq. (16) from eq. (19), the entropy of demixing is obtained: 

ASd, = AS3 - AS2 = k(N2 In Nd + N1 In $1 + N2 In $) (20) 
Substituting eqs. (15) and (20) into eq. (14) yields the ordinary free energy of 
demixing: 

AGd, = -V(61- 6 2 ) 2 $ 1 ~ 2  - kT(N2 In Nd + N1 In $1 + N2 In $2) (21) 
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Surface Free Energy for Domain Formation 

surface free energy for polymer I1 domain formation is equal to 
A special problem to be considered involves interfacial free energy. The 

AG, = yA, (22) 

where y is the interfacial energy and A, is the surface area of interaction between 
polymer I and polymer 11. If the polymer I1 domains are assumed to be spherical, 
the surface area is equal to 

A, = NdrD2' (23) 
where D2 is the average polymer I1 domain diameter. Substituting eq. (23) into 
(22) yields 

G, = ryNdDZ2 (24) 

Free-Energy Change for Domain Formation 

The free-energy change for polymer I1 domain formation is obtained by adding 
eq. (7), (13), (21), and (24): 

Since all the polymer I1 is assumed to be located in the domains, the volume of 
polymer I1 is 

V2 = NdrDz3/6 (26) 

and the number of polymer I1 domains is 

From the electron microscopy results presented earlier, the polymer I1 (PS) 
domain size is clearly a function of the degree of crosslinking of the polymer I 
(SBR) network. Although the exact relationship may be complex, for simplicity 
assume that the domain size is a linear function of the rms end-to-end distance 
between crosslink sites of the polymer I network, expressed by eq. (28) where 
C is a proportionality constant relating the physical distance between the 
crosslink sites of polymer I and the domain dimensions of polymer I1 (see Fig. 
2): 

D2 = Crl (28) 

Equation (25) now can be rewritten in the form 

- 3 - l n  ( D 2  )3] (29) 3DZ2 
C2K2Mci CKM,.l lI2 

where f l 2  is the number of moles of polymer I1 and vl is the effective number of 
moles of crosslinked chains in the polymer I network. 
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Fig. 2. Molecular models for evaluating C. (a) Schematic diagram of some simple crosslink clusters, 
useful for estimating the parameter n, and hence C, in eqs. (28) and (34). (b) The four-chain model, 
showing the relationship between rl and LIZ. 

In order to determine the domain diameter which gives the minimum free 
energy change, the first derivative of eq. (29), d(AGd)ldD2, is equated to zero 
and solved implicitly for D2. This procedure yields 

The number of moles of polymer I1 is equal to 

where W2 and M2 are the weight and molecular weight, respectively. The num- 
ber-average molecular weight between crosslink sites for polymer I, M,l, can be 
related to the crosslink density v1 by the following equation:" 

where V1, U1, and M I  are the volume, specific volume, and primary molecular 
weight, respectively, of polymer I. The last term on the right side of eq. (32) 
arises from the need to correct for dangling end chains in lightly crosslinked 
materials. Assuming a density of 1.0 glcm3 for both polymers so that the weights 
are equivalent to the volumes along with the relationship 

w1+ w2 = 1 (33) 

and substituting eqs. (31) to (33) into eq. (30), the equation for the polymer I1 
domain diameter is obtained: 

Finally, the constant C from eq. (28) is evaluated in the following manner. 
Several models may be used to evaluate the constant C ,  where the domains are 
pictured as surrounded by a crosslink cluster containing n chains (see Fig. 2). 
The n = 1 model predicts C = 1. The four-chain model predicts C = a. In 
reality, all possible chain combinations leading back to the point of origin have 
to be considered, and a weighted sum from n = 1 to n = should be used. For 
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simplicity, n will be taken as 4, yielding C = A, which assumes that the polymer 
I1 domains are surrounded by an average of four polymer I chain segments. 

Equation (34) can be simplified if eqs. (lo), (ll), (28), and (35) below are used 
to replace the parameters C, K, rl, and q, Since both polymers are considered 
to have a density of unity, a13 may be expressed as 

After the appropriate substitutions and algebraic manipulations, the modified 
equation for the polymer I1 domain diameter is 

2rW2 
D2 = 

1 
RTvl [ (---)2'3 + 

- $1 1 - w2 UlM2 

which contains no arbitrary constants. 
The crux of the problem in the derivations of eqs. (34) and (36) is related to 

the variation of the end-to-end distance between crosslink junctions for polymer 
I (rl) within the sample after phase separation of polymer I1 occurs. The implicit 
and perhaps somewhat incorrect assumption in both equations is that an average 
value 

can be substituted, whereas the polymer I chains surrounding the polymer I1 
phase domain are likely to be more highly extended than predicted by eq. (37). 
(It may be that the sum of the end-to-end distances within the sample, R = 
Zi rli, remains the same before and after phase separation, but the distribution 
changes.) 

TABLE I 
Experimental and Theoretical PS Domain Size in IPN's 

Domain size, pm 

Form I1 
Form I (eq. 34) (es. 36) Comp. of 

Series IPN, % Experi- 
no. Type SBR/%PS mental ' y =  1 ' y=  3 ' y=  10 ' y = l  

3 Semi-1 
12 Semi-1 

6 Semi-1 
14 Semi-1 

4 IPN 
13  IPN 

5 IPN 
15 IPN 

5 IPN 
5 IPN 

20180 
21/79 
22/78 
18/82 
22/78 
20180 
21/79 
19/81 
11/89 
24/76 

0.15 
0.15 
0.055 
0.060 
0.11 
0.11 
0.065 
0.060 
0.105 
0.10 

0.081 
0.080 
0.032 
0.035 
0.089 
0.093 
0.034 
0.036 
0.117 
0.086 

0.125 
0.122 
0.046 
0.050 
0.128 
0.133 
0.048 
0.050 
0.168 
0.123 

0.192 
0.188 
0.069 
0.075 
0.190 
0.198 
0.071 
0.074 
0.250 
0.183 

0.171 
0.16 
0.044 
0.047 
0.57 
0.59 
0.053 
0.054 
0.42 
0.66 
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Comparison of Theory to Experiment 
Table I shows experimental values for the phase domain diameter obtained 

in an earlier papers for the SBR/PS IPNs and semi-I compositions. Also shown 
are values calculated from eqs. (34) and (36). 

From equilibrium swelling measurements, the crosslink density of SBR 
(polymer I) as a function of Dicup concentration has been determined by means 
of the Flory-Rehner equation,ll and average values are listed in Table 11. The 
number-average molecular weight of the SBR copolymer was taken as M1 = 9.6 
X lo4. A value of K = 8.2 X has been selected from literature data13 for pure 
P B  and is considered to be adequate for SBR since the copolymers consist pri- 
marily of butadiene segments. The interfacial energy for many polymer pairs14J5 
lies between 1 and 10 dynedcm, and y = 3 dynedcm has been calculated for the 
P B P S  system.16 Therefore, y equal to 1,3, and 10 dynedcm is used to study 
the effect of interfacial energy on domain size. 

Equation (34), which assumes the four-chain model resulting in C = fi (or 
a statistical average of all possible chain models, approximated by the four-chain 
model), yields nearly correct values for domain size in all cases (see Table I). 
When eq. (34) is simplified to eq. (36), the parameters C and K are eliminated, 
and no arbitrary constants remain. Also, the equation is linear in terms of DZ 
and simpler to interpret. The values for domain size obtained from eq. (36) fit 
the semi-1 compositions well when y = 1 dyne/cm but poorly for the full IPN's. 
however, it should be pointed out that the main derivation was performed orig- 
inally for the semi-1 case. 

TABLE I1 
Values of Mc for SBR Networks 

% Dicup in  SBR M,X 10-5 

0.10 
0.20 

0.226 
2.38 

It may be concluded that the phase domain size of polymer I1 is inversely 
proportional to the crosslink level of polymer I. The compositional variation 
is more complex. While reasonable agreement between theory and experiment 
is shown in the above, the semiempirical nature of the equations must be em- 
phasized. It is planned to give the equations a more severe test in the near fu- 
ture. 

The authors wish to thank the National Science Foundation for support through Grant GH- 
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